

characterize a pure substance The ratio between mass and volume Units: g/ml or g/cm³ Formula: density = $\frac{\text{mass}}{\text{volume}}$

Demsity

- Density physical property of matter than can be used to

Earth Science Reference Tables [ESRT]

Gradient = change in field value distance

Rate of change =

mass Density = volume

Density

Eccentricity = distance between foci length of major axis

change in value time

Problem: Charlie finds a goldish rock and thinks he is a millionaire. How can he figure it out?

Density

Gold or Pyrite

Scout-Pro

PRONT

Density

Gold or Pyrite

Volume = 15.0 ml

density = $\frac{\text{mass}}{\text{volume}}$

So is Charlie a millionaire?

Pyrite = 5.0 g/ml

Gold or Pyrite

Gold = 19.3 g/ml

All substances are most dense in the solid phase... **EXCEPT** water

How can we tell that solid water [ice] is less dense that liquid water?

Density

Every substance can be identified using density **Example:** Gold = 19.3 g/cm^3

Density

temperature and / or pressure change If pressure increases, density will increase

Density

- Density of a substance remains the same [constant] unless
 - If temperature increases, density will decreases

